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Abstract: NMR data (chemical shifts, NOEs, coupling constants and variable temperature 

experiments), FT-IR data and MM2 ° molecular mechanics calculations have allowed us to demonstrate 

that 3-amido-l,6-anhydro-3-deoxy-[~-D-glucopyranose acts as a hydroxyl-based interaction unit and 

provides conformational control of self-recognition processes by intramolecular hydrogen bonding. 

© 1997 Elsevier Science Ltd. All rights reserved. 

The study of recognition processes involving carbohydrates is a topic of current interest t. Hydrogen 
bonding and lipophilic interactions have been proposed as the major forces accounting for specificity of 
carbohydrate-carbohydrate self-assembly in natural systems 2. The study of the carbohydrate OH...OH hydrogen 
bond energetics, cooperativity 3, and the influence of intramolecular hydrogen bonds on the formation of 
intermolecular H-bonds 4a, b, is fundamental to the understanding of the basis of these recognition processes. 

Different synthetic receptors employ sugar hydroxyl groups as hydrogen bonding centers for molecular 
recognition of carbohydrates in non polar media n . H-bonds are highly directional as well as one of the strongest 
intermolecular forces 5. H-bonding involving neutral amidic-type NH and carbonyl groups has played a 
predominant role in the design of unique self-assembled supramolecular structures 6a-c. The possibility of 
generating self-assembled supramolecular structures based on intermolecular H-bonding of hydroxyl groups has 
not been demonstrated until very recently 6d, e. 

As a part of a project to develop simple carbohydrate model systems 7 for the study of the relative 
contributions of the different forces involved in carbohydrate recognition events, this work reports on the use of 
3-amido-l,6-anhydro-3-deoxy-[~-D-glucopyranose as a hydroxyl-based interaction unit, and on its ability to 
provide conformational control of self-recognition processes by intramolecular hydrogen bonding s. 
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The first step to achieve a well defined 
self-assembled structure is the control of the 
three dimensional structure of the 
monomeric unit. Receptor 19, where the 
interaction unit is present, has been designed 
for the purpose of OH...OH hydrogen 
bonding-mediated self-assembly. Molecular 
modelling of 1 demonstrates that the linkage 
of the spacer to position 3 of the sugar, via 
an amide moiety, could allow the formation 
of an intramolecular NH...O1 hydrogen 
bond, thus fixing the conformation around 
the NH-C3 bond. This particular orientation 
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places both hydroxyl groups (OH2 and OH4) pointing outwards, hence allowing the self-assembly of the 
carbohydrate receptor. Furthermore, the formation of intramolecular NH...Npy hydrogen bonds, involving a 
pyridine spacer 8b, allows complete control of the conformation of the molecule by locking the dicarboxylic 
moiety in a cis-out conformation l°. Indeed, MM2* calculations li predict this rotamer as the most energetically 
favourahle 12, with a NH..-O1 distance (2.3 ,~) in agreement with the array of intramolecular hydrogen bonds 
shown in scheme 1. 

Conformational analysis of 1 by NMR in CDC13 showed that the pyranoid ring in solution is a IC4 chair ~3. 
Experimental distances obtained from NOEs 14a and H-N-C3-H3 diedral angles obtained from vicinal 3JNH.H 3 

values Igb are in agreement with the geometry of 1 calculated by MM2*. 
Additional experimental evidence for the presence of the NH.-.O1 hydrogen bond in solution in the 

interaction unit is provided by Fr-IR (CH2C12) and variable temperature IH-NMR (CHC13) studies 15. Model 
compounds 4 and 5, as well as protected amides 2 and 3 were used to determine its existence (Figure 1). 

The FT-IR spectra 16 of compounds 2, 3, 4 and 5, recorded at two different concentrations, show a sharp 
amide N-H stretching vibration 15a between 3500 - 3350 cm-L which can be attributed to free or intramolecular 
hydrogen bonded species 15. Indeed, only in compound 4 at the highest concentration studied (5mM) was any 
evidence for intermolecular hydrogen bonded species observed, with only a very weak band appearing at around 
3312 cm -l. 
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Fig.1. FT-IR spectra of the N-H stretch region of 2, 3, 4, and 5 in CH2C12 at 5 mM concentration 

In figure 1, the free N-H stretching vibration of 4 can be observed at the highest frecuency of 3450 cm -1, 
as expected, whereas the corresponding VNH is shifted 12 cm -L to lower frequency in compound 2. This shift 
may be attributed to the formation of an intramolecular hydrogen bond between NH...O1 ~7. A similar trend is 
observed when the VNH of compounds 5 and 3 are compared, where the corresponding shift is 25 cm ~. The 
intramolecular hydrogen bonds between NH-.Npy in compounds 5 and 3 produce a shift of 42 and 55 cm -I 
when compared with compounds 4 and 2, respectively. 

The IH-NMR chemical shifts (299 K, CDCI3) of the NH resonances of 4 (6.18 ppm) and 2 (6.61 ppm), 
as well as those of the pyridine-based compounds 5 (7.54 ppm) and 3 (8.50 ppm) also appear to agree with an 
increasing involvement of the corresponding NH in intramolecular hydrogen bonding. Thus, the combined FF- 
IR and NMR evidence suggests that the NH...OI hydrogen bond is indeed present in solution, thus restricting 
the conformation around the HN-C3 linkage. 

The self-assembly process of 1 in CDC13 was studied by ~H-NMR, monitoring the concentration and 
temperature dependence of the OHs and NH chemical shifts and coupling constants. OH chemical shifts and 
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temperature coefficient values for 1 clearly varied upon dilution from 5 mM to 0.05 mM. On the other hand, the 

NH resonances were unmodified (Table 1). Variable temperature nH-NMR experiments (299-319 K) of 1 - 5 in 
CDC13 showed small temperature coefficients for the NH resonances. However, those measured for the OH2 

and OH4 signals for 1 were larger (-0.0075 and -0.014 ppm/K, respectively) at the highest concentration. The 
order of these values is consistent with involvement in intermolecular hydrogen bonds 15c' d. 

Table 1. ~H-NMR Chemical Shifts, Coupling Constants, and Temperature Coefficents of NH and OH Resonances of I at Two 
Different Concentrations 

Compound 1 

Signal Concentration ~ A~/AT b 3ja 

(mM) (ppm) (ppm/K) (Hz) 

OH2 5.00 3.34 

OH2 0.05 2.94 
OH4 5.00 3.66 

OH4 0.05 2.99 
NH 5.00 8.60 
NI--I 0.05 8.53 

7.5"10 .3 9.2 

2.7'10 .3 10.3 
1.4.10 .2 2.5 
5.1'10 .3 5.1 

2.9.10 .3 7.8 
2.4" 10 .3 8.4 

aData at 298 K bMeasured between 297 K and 313 K 

With regard to the 3JH.oH couplings, OH2 and OH4 behave differently. 3JH2,OH2 is independent of both 

concentration and temperature. The measured value of--- 10 Hz indicates a particular orientation of the hydroxyl 

proton, probably involved in an intramolecular hydrogen bond (with 0 5  or 04).  On the other hand, at the 
highest concentration (5 mM), 3JH4.OH4 varies from 2.5 Hz to 5.4 Hz between 297 K and 313 K. The value 

measured at low concentration (0.05 mM) is 5.0 Hz, regardless of temperature. This behavior is consistent with 
a particular orientation of the OH4 group at high concentration, probably involved in an intermolecular hydrogen 
bond. However, OH4 is free at low concentration. 

These results indicate that the self-assembly process of the acyclic receptor 1 is mediated by intermolecular 
OH...OH hydrogen bonding and not by the amide. 

The characterization of the agreggation process and of its energeticst8 is currently in progress. 
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